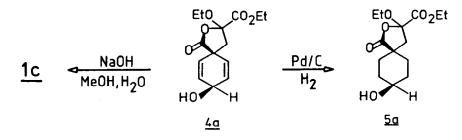
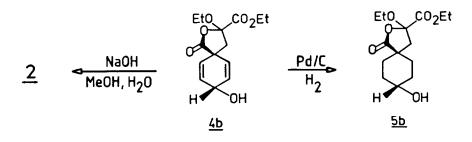

TOTAL SYNTHESIS AND UNAMBIGUOUS STEREOCHEMICAL ASSIGNMENT OF DISODIUM PREPHENATE

Walter Gramlich and Hans Plieninger

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg, Germany

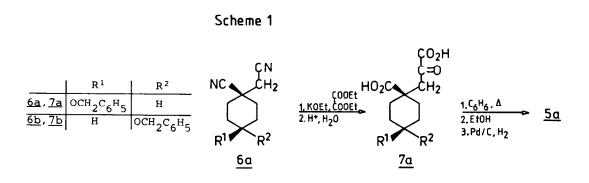

Prephenic acid (<u>1a</u>), in form of its salts, represents the essential intermediate in the biosynthesis of aromatic compounds, starting from carbohydrates¹⁾. Most of bacteria, micro-organisms and lower plants follow this pathway. During a long period of investigations, $Davis^{2)}$ could assure the existence of <u>1</u>. The formulation of the structural formula by $Weiss^{3)}$, deduced only from the rearrangement by acid and alkali, the catalytic hydrogenation, the uv, and the analysis of the barium salt <u>1b</u> is a masterpiece, considering that similar 2,5-cyclohexadienols became known only much later. Because of its exceptional constitution, possessing the labile dienol- and pyruvate-skeletons, prephenic acid (<u>1a</u>) is only stable in form of its salts <u>1b</u> and <u>1c</u> for a longer time⁴⁾.



The synthesis of prephenic acid is as fascinating as it is difficult, because of its high tendency to aromatize. Many unsuccessful attempts of the synthesis were prosecuted⁴⁻⁶.

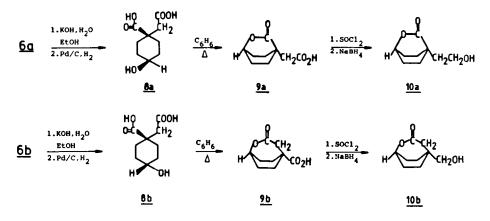
So far, pure barium prephenate (<u>1b</u>) has been isolated from culture filtrates of special mutants of Escherichia coli, a tyrosine auxotroph of Salmonella typhimurium and a triple mutant of Neurospora crassa⁷⁾. Recently, *Danishefs*- ky and $Hirama^{\beta}$ succeeded in the total synthesis of <u>lc</u>, using a Diels-Alder route. Our general advance implying a new synthesis of dienones via seleno enones was recently described⁹.

The convenient intermediate for the synthesis of <u>1</u> is the dienone <u>3</u>, a compound of extreme lability¹⁰⁾. <u>3</u> was reduced with 9-BBN¹¹⁾ to a mixture of the diastereomers <u>4a</u> and <u>4b</u> (ratio <u>4a</u>:<u>4b</u> = 4:3)¹²⁾. Separation was completed by chromatography on silica gel. After careful hydrolysis under alkaline conditions and following lyophilization, <u>4a</u> gave a sample of disodium prephenate (<u>1c</u>). The ¹H NMR spectrum (in D₂O) was identical with those, reported in literature⁷,⁸⁾.



The other diastereomer <u>4b</u> gave in the same manner a disodium salt <u>2</u>. The two spectra were very similar but clearly different in detail. Thus, the difference in the two broad triplets of the allylic hydrogens is only $\Delta = 0.05$ ppm the signal of prephenate <u>1c</u> at higher field¹³⁾. The signals of the two methylene protons could be obtained at 3.17 ppm (<u>1c</u>) and at 3.22 ppm (<u>2</u>), while Danishefsky⁸⁾ didn't get them (exchange in basic D₂O). Both of the disodium salts <u>1c</u> and <u>2</u> could easily be transferred to phenylpyruvate by adding acid and afterwards alkali (λ_{max} =320 nm, pH 9).

Now, we can prove the configuration of the dienols 4a and 4b by synthetical compounds of well-known configuration. The connecting links for stereochemical assignment were the spiro alcohols 5a and 5b, which could be synthesized in a stereospecific way, outlined in Scheme 1 (with regard to clearness, only one epimer 5a is shown; the synthesis of 5b takes the same course).


Starting materials for the synthesis of <u>5a</u> and <u>5b</u> were the two dinitriles

<u>6a</u> and <u>6b</u>, which could be easily separated from each other by recrystallization $^{14,15)}$.

The configuration of the latter, $previously^{14}$ conjectured by different rates of esterification, could now be established in the following way, outlined in Scheme 2; the two isomers <u>10a</u> and <u>10b</u> could easily be assigned by their ¹H NMR spectra.

Scheme 2

Finally, the cyclohexadienols 4a and 4b were hydrogenated over 10% Pd/C. The NMR spectrum of the hydrogenated 4a was identical with the spectrum of 5a,

	CH3CH2O	, ^R -oçµ₂ç , , ,	H ₃ Table 1		•	compounds <u>5a</u> city, coupling		
	ОН	8-H	12-H	14-H	13-н	15-H	4 -H	cyclohexH
<u>5a</u>	2.7	3.80	4.3(q,7.2)	3.72(m)	1.3(t)	1.2(t,7.2)	2.30(s)	2.5-1.0
5b	2.1	3.70	4.3(q,7.1)	3.70(m)	1.3(t)	1.2(t, 7.2)	2.38 a)	2.3-0.8

^{a)} $J_{AB} = 13.8 \text{ Hz}$

synthesized independently, while the product of the hydrogenation of $\underline{4b}$ was identical with $\underline{5b}$.

Table 2. 13 C Chemical Shifts (CDCl₂) of <u>5a</u> and <u>5b</u> (in ppm relative to TMS)

	C-1	C-3	C-4	C~5	C-6	C-7	C-8	C-9	C-10	C-11
<u>5a</u>	179.18	102.95	43.26	44.17	29.90 ^a	29.45	66.26	29.45	30.15 ^a	,167.96 ^{c)}
<u>5b</u>	180.01	103.25	43.28	43.81	32.87 ⁶	31.13	68.62	31.13	32.23 ^b	167.85 ^{d)}

c) Remaining ¹³C signals of <u>5a</u>: C-12: 61.93; C-13: 14.09; C-14: 62.42; C-15: 15.37

^{d)} <u>5b</u>: C-12: 61.98; C-13: 14.09; C-14: 62.48; C-15: 15.38

In this way, the <u>stereochemical</u> <u>assignment</u> of <u>prephenate</u> proposed 1961 by paper chromatographical comparison¹⁶ of hydrogenated prephenate with synthetic tetrahydroprephenates could now be confirmed without doubt.

References and Notes

- 1. For a review, see E.Haslam, The Shikimate Pathway, Butterworth, London 1974.
- 2. B.D.Davis, Adv. Ensymol. 16, 247 (1955).
- 3. U.Weiss, C.Gilvarg, E.S.Mingioli and B.D.Davis, Science <u>119</u>, 774 (1954).
- 4. Review of prephenate: H.Plieninger, Angew. Chem. 74, 423 (1962).
- 5. S.Danishefsky, R.K.Singh and T.Harayama, J.Am.Chem.Soc. <u>99</u>, 5810 (1977).
- 6. T.L.Lemke, Univ. of Kansas, Diss. Abstr.B 27(6), 1841 (1966).
- 7. P.K.Dudzinski and J.F.Morrison, Prep. Biochem. <u>6</u>, 113 (1976).

8. S.Danishefsky and M.Hirama, J.Am.Chem.Soc. <u>99</u>, 7740 (1977).

9. H.Plieninger and W.Gramlich, Chem. Ber. 111, 1944 (1978).

10. W.Gramlich and H.Plieninger, Tetrahedron Lett. <u>1978</u>, 475.

- 11. S.Krishnamurthy and H.C.Brown, J. Org. Chem. <u>42</u>, 1197 (1977).
- 12. The methyl analogous dienols have been synthesized by S.Danishefsky⁸⁾. Unlike our work, he could only suspect the stereochemistry of his dienols.
- 13. 3-(Trimethylsilyl)propionic acid. sodium salt was used as water-soluble standard. The values of <u>lc</u> and <u>2</u> are given in ppm from the SiMe signal.
- 14. H.Plieninger and G.Keilich, Chem. Ber. <u>92</u>, 2897 (1959).
- 15. H.Plieninger and H.J.Grasshoff, Chem. Ber. <u>90</u>, 1973 (1957).
- 16. H.Plieninger and G.Keilich, Z. Naturforsch. <u>16b</u>, 81 (1961).

(Received in UK 11 July 1978; accepted for publication 21 July 1978)

3622